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This article demonstrates assumptions of invariance that researchers often implicitly
make when analyzing multilevel data. The first set of assumptions is measurement-
based and corresponds to the fact that researchers often conduct single-level explor-
atory and confirmatory factor analyses, and reliability analyses, with multilevel data.
The second assumption, that of structural invariance, is engineered into the common
multilevel random coefficient model, in that such analyses impose structural invariance
across multiple levels of analysis when lower-level relationships represent both be-
tween- and within-groups effects. The nature of these assumptions, and ways to address
their tenability, are explored from a conceptual standpoint. Then an empirical example
of these assumptions and ways to address them is provided.
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A frequent shortcoming when ignoring the multilevel
structure of the data is not what is misestimated, but
what is not learned.—B. Muthén (1997, p. 455)

In many settings, researchers deal with data
that are multilevel in nature. For example, indi-
viduals may be nested within workgroups (e.g.,
Hofmann, Morgeson, & Gerras, 2003) and ob-
servations over time may be hierarchically ar-
ranged within individuals (e.g., Thoresen,
Bradley, Bliese, & Thoresen, 2004). This rec-
ognition has prompted the adoption of statistical
techniques that allow for the efficient and unbi-
ased analysis of these hierarchical data, such
as multilevel random coefficient modeling
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(MRCM; i.e., hierarchical linear modeling) (see
Hox, 2002; Moritz & Watson, 1998; Nezlek &
Zyzniewski, 1998; Pollack, 1998; Raudenbush
& Bryk, 2002). Although the use of such tech-
niques is becoming common in many fields of
study, researchers still often analyze multilevel
data as if they were single-level in nature. In
these cases, assumptions of parameter invari-
ance are made across the levels of analysis that
exist in the data, which we term ‘““assumptions
of cross-level invariance.” Such assumptions
are of two forms: cross-level measurement in-
variance and cross-level structural invariance.
Cross-level measurement invariance is as-
sumed when single-level confirmatory/explor-
atory factor analyses (CFA, EFA) and reliability
analyses are conducted with multilevel data—
reliability and factor analyses describe the mea-
surement-based properties of observed vari-
ables (Gorsuch, 1983). In these analyses, a sin-
gle estimate of factor loadings, factor structure,
and reliability are estimated; these estimates
collapse across the multiple levels which exist
in the data, yielding a single estimate for any
given parameter across the multiple levels in-
herent in a researcher’s data (for examples, see
DeShon, Kozlowski, Schmidt, Milner, &
Weichmann, 2004; Myers, Feltz, & Short,
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2004; Myers, Payment, & Short, 2004). The
problems with such an approach is that (a) re-
searchers miss the opportunity to discover sim-
ilarities and differences across levels of analysis
in the functioning of their observed variables,
differences that could have interesting theoreti-
cal importance (see Cronbach, 1976; Sirotnik,
1980) and (b) researchers use such single-level
analyses to justify the functioning of observed
variables, which are then often used to investi-
gate relationships at multiple levels of analysis.

Cross-level structural invariance is assumed
when effects among variables are constrained to
equality across levels of analysis—relationships
among different variables are structural param-
eters (Vandenberg & Lance, 2000). Interest-
ingly, this often occurs in multilevel data anal-
yses, where researchers are explicitly attempt-
ing to account for the multilevel structure of
their data (e.g., Luong & Rogelberg, 2005).
Cross-level structural invariance is often un-
knowingly assumed because many MRCM pro-
grams have a modeling default which forces
invariance on researchers’ structural models
across levels. This default constrains the rela-
tionships among “lower-level” variables to
equality across the within- and between-groups
levels of analysis or across the within- and
between-individual levels of analysis (for ex-
amples, see Hofmann et al., 2003; Chen, Bliese,
& Mathieu, 2005). The shortcoming of such
invariance constraints is not simply that re-
searchers may be unjustifiably imposing struc-
tural invariance across levels; more importantly,
researchers miss the opportunity to discover
cross-level differences in relationships (i.e.,
composition effects), differences that “occur
with considerable regularity” (Raudenbush &
Bryk, 2002, p. 140) and have implications for
understanding constructs across levels (see
Chen et al., 2005; Morgeson & Hofmann,
1999).

The goal of the current article is to explore
the problems of assuming multilevel measure-
ment and structural invariance in factor analy-
ses, analyses of reliability, and MRCMs. More
specifically, in exploring these three issues, we
aim to elucidate the information lost to re-
searchers when treating multilevel data as if
they were single-level in nature, which is nec-
essarily done when assumptions of invariance
are not examined. While these issues have re-
ceived some attention in the past (see Chen,

Mathieu, & Bliese, 2004; Cronbach, 1976;
Dyer, Hanges, & Hall, 2005; Raudenbush &
Bryk, 2002; Sirotnick, 1980), such discussions
seem to have gone unrecognized by researchers.
Additionally, these discussions typically ex-
plore multilevel analyses, such as reliability
(e.g., Chen et al., 2004), from the perspective of
construct validity, rather than assumptions of
cross-level invariance, and have failed to pro-
vide an integrative exploration centered on as-
sumptions of cross-level measurement and
structural invariance. Below, the nature of these
assumptions, and the effects of their being vio-
lated, is explored. We couch our discussion of
these assumptions in terms of how each relates
to the separation of within- and between-groups
variance—termed “disaggregation” (Muthén &
Satorra, 1995)—and the meaning of these
sources of variation for data collected at a single
level of analysis. In addition to offering this
conceptual discussion, we also provide empiri-
cal examples and potential solutions to these
issues using observed data. We begin with a
general exploration of multilevel data and their
analysis.

Multilevel Data and Their Analysis

Multilevel data are those that contain sources
of variance at multiple levels of analysis
(Muthén & Satorra, 1995). A typical example of
such data is that gathered from individuals
nested within groups. When assessing individ-
uals within such groups along a measure of
interest, the total variance in the responses will
be constituted by both between- and within-
groups variance. So, data collected from indi-
viduals within groups contains (at least) two
identifiable sources of variance: between- and
within-groups variance. Between-groups vari-
ance is the variance that exists between the
groups, while within-groups variance is the
variance that exists within the groups (Kenny &
La Voie, 1985). This straightforward concept
represents the proverbial backbone of, and im-
petus for, multilevel modeling.

Each group’s average value along the measure
will be that group’s contribution to between-
groups variance. This is because the mean value
for the group cannot vary within the group, only
between the groups. That is, at the group-level of
analysis, the only value which can vary—given
that all individual-level scores are equally weight-
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ed—is the group’s mean. Similarly, each individ-
ual’s deviation from their respective group mean
is his or her contribution to within-groups vari-
ance. Again, this is because the groups’ means
cannot vary within the groups; only deviations
away from a group’s mean can vary within a
group. Thus, at the within-groups level of analy-
sis, the only value which can vary is the deviation
away from the group’s mean.

With multilevel data, the between-groups
variance may be thought of as “group-level”
variance because it is independent of the within-
groups variance. Similarly, deviations away
from the group means may be thought of as
“individual-level” variance because it is inde-
pendent of the group effect. This logic of be-
tween- and within-variance, as applied to an
observed variable, may be represented as:

yi =yt ()’zj— J’/) (1)
where y;; is a score for a person i in a group j and
Y;is the average value for group j. As can be read,
y; is the group’s contribution to between-groups
variance. Conversely, (y; — y;) is the individual’s
contribution to within-groups variance. Impor-
tantly, these “disaggregates” are additive and or-
thogonal (Cronbach & Webb, 1975). In other
words, (a) by summing these two values, the orig-
inal score along the measure may be obtained and
(b) separate, independent structures may be pos-
ited as influencing these two sources of variation,
meaning that we may separately model relation-
ships at the between- and within-groups level
of analysis (Muthén, 1989, 1991, 1994, 1997,
Rabe-Hesketh, Skrondal, & Pickles, 2004; Skro-
ndal & Rabe-Hesketh, 2004).

Now, consider a case in which the observed
variable y;; is one of many items within a scale,
which may be represented as y,;, where p rep-
resents the item with which the datum is asso-
ciated. Given meaningful amounts of variance
associated with both j and i, these items will
contain both between- and within-groups vari-
ance, respectively. As such, any parameter es-
timates describing these items’ functioning
which are insensitive to this multilevel variance
will reflect both sources of variation and will
constrain any summaries of the items’ function-
ing to equality across the levels of analysis.
Similarly, any single parameter which describes
these items’ relation to other variables will re-
flect both between- and within-groups effects—

provided the other variables also contain both
sources of variation—thereby constraining any
effect estimates to equality across the levels of
analysis (see Raudenbush & Bryk, 2002). In
other words, the multilevel sources of variation
in these data will be ignored and assumptions of
multilevel invariance will be imposed if one
uses single-level analyses. Below we demon-
strate how this effect occurs for both single-
level reliability and confirmatory/exploratory
factor analyses. In addition, we also show how
this effect occurs in analyses in which research-
ers recognize and explicitly model their multi-
level data.

Data

To provide an example of these issues for the
current work, we used a dataset gathered from a
large Northeastern organization whose focus is
largely one of customer service (see Tables 1 and
2 for descriptive statistics). This organization has a
structure which allows individuals to be nested
into customer-service oriented groupings across
the country, with 6,572 individuals nested within
505 groupings. The data were collected as part of
an annual company-wide survey which took place
in 2001. All items used for the current study were
answered along a Likert-type scale with five re-
sponse options, which ranged from strongly dis-
agree to strongly agree—more details regarding
the variables are provided below.

Confirmatory and Exploratory Factor
Analysis

Confirmatory and exploratory factor analyses
are commonly conducted to assess the function-
ing of items within a scale. These analyses give
insight into latent influences which may be re-
flected across any measures of interest; “[they are]
a method for classification of linear dependence”
(Joreskog, 1979, p.10, original emphasis). Ergo,
factor analyses may be conceptualized as extract-
ing sources of covariation among a series of ob-
served variables, sources which allow for explain-
ing observed variables with a smaller number of
latent variables (i.e., factors; Gorsuch, 1983).

We may represent the model-implied covari-
ance structure associated with the common fac-
tor model as

S =AVA'+ 0O (2)
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where 3, is a population variance/covariance ma-
trix of observed variables, A is a matrix of factor
loadings (and A’ is its inverse), W is an identity
matrix of factor variances, and ® is an identity
matrix of residual variances. With such a struc-
ture, the variables which constitute 3, may be
assumed linearly independent conditional on their
relationships with the latent variables.

However, now assume that >, contains both
between and within-groups sources of variance/
covariance (i.e., data have been gathered from
people in groups). The above factor model may
be reconstructed to show the implications of
such multilevel variance/covariance as

2= AYA + O (3)

where

2= (4)
Ap= (5)
v, (6)
0, = (7

and, inserting the elements in Equations 4-7
into Equation 3, it follows that

ET = E13‘ + EW = (Ap + AW)(q,B + \PW)
(A" + Ay') + (O + Oy) (8)

where all terms have the same meaning as in
Equation 2, but the subscript T represents a
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total, aggregate matrix, and the subscripts B and
W represent between- and within-groups matri-
ces, respectively. With multilevel data, Equa-
tions 3 and 8 show how constraints of invari-
ance are placed on the common CFA/EFA
across the between- and within-groups parts.
There are a number of problems with such con-
straints.

First, the CFA/EFA solution constrains to
invariant the factor structures across the levels
of analysis, meaning the possibility of different
numbers of factors across levels is not allowed
because W, may take only one form. Again, this
is a problem not only because such an assump-
tion may be unjustified, but, moreover, because
discovering differential factor structures across
levels of analysis may be of substantive interest
to researchers (see Cronbach, 1976; Sirotnik,
1980). Second, Equations 3 and 8 force to in-
variant the factor loadings and residual vari-
ances across the levels of analysis. This is of
issue because such invariance is an empirical
question, and while some authors argue for the
justification of collapsing across multiple levels
of analysis when conducting CFA/EFA (e.g.,
Myers et al., 2004), the final word on such
invariance must always be provided by a re-
searcher’s theory and data.

Beyond the issues of parameter invariance, an-
other potential problem associated with conduct-
ing single-level CFAS/EFAs with multilevel data
is the fact that the sample sizes for the B and W
parts will never be equivalent; there will always be
more people than groups. This means that the
parameters at the between-groups level should
be assumed to be more unstable than those at the
within-groups level of analysis, and when inte-

Table 1

Single-Level Means, Standard Deviations, and Correlations Among Study Variables

Item M SD Icc S1 S2 S3 S4 S5 S6 S7 B AS
S1 2.59 .98 .05

S2 2.77 1.10 .07 .53 —

S3 2.48 1.01 .04 45 .58 —

S4 2.26 .94 .03 .38 40 44 —

S5 2.80 1.16 .07 54 .57 46 .39 —

S6 2.59 .96 .05 45 .69 .60 42 .55 —

S7 2.54 .99 .06 .50 .50 54 42 52 .53 —

B 2.69 97 .02 —.14 —-.10 —.06 —.08 —.12 —.11 —.11 —

AS 2.57 77 .08 73 .82 77 .64 77 .80 .76 —.14 —
Note. 1CC = intra-class correlation, equal to the between-groups variance divided by total variance for a given variable,

is an “ICC(1)”; S1-S7 = satisfaction items 1-7; B = bureaucracy; AS = average of the satisfaction items; N = 6,575.
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Table 2

Disaggregated Correlations Among Study Variables

Item S1 S2 S3 S4 S5 S6 S7 B AS
S1 — 78 .84 72 .88 78 .88 —.61 —
S2 52 — .89 7 .87 91 76 -22 —
S3 44 .57 — .82 .81 .82 .82 -.27 —
S4 .36 .39 43 — 73 78 72 —-.08 —
S5 Sl .55 44 37 — .82 .81 —-42 —
S6 43 .68 .59 40 .53 — 79 -.31 —
S7 A8 49 52 41 .50 52 — -.52 —
B -.12 —-.10 -.05 —.08 —.11 —.11 —.09 — -.39
AS — — — — — — — —-.13 —
Note. Lower diagonal = within-groups correlations with N = 6575; Upper diagonal = between-groups correlatios with

N = 505; S1-S7 = satisfaction items 1-7; B = bureaucracy; AS = average of the satisfaction items; the correlations among
the average satisfaction variable and its constituent satisfaction items was not estimated because the between-groups matrix

was singular (these variable were very highly correlated).

grating across B and W, this should be reflected
with proper weighting. However, in Equations 3
and 8, the B and W parts are given equal weight.
This may be shown with an equation that has a
meaning equivalent to both Equations 3 and 8

3= (I'Ay + 1-A)(1-¥, + 1)

(I'Ag" + 1-Ay)) + (105, + 1-0,) (9)
where each matrix is given a unit weighting, leav-
ing the final CFA/EFA solution unreflective of the
fact that the B and W parts may be assumed to de
differentially stable because of the differential
number of observations associated with each.

This means that a final CFA/EFA solution,
which integrates across the B and W parts, will
be insensitive to any difference in the number of
units across the levels of analysis (e.g., 50
groups and 500 individuals vs. 5 groups and 500
individuals); instead, the final solution will de-
pend on the proportions of variance associated
with each level of analysis which constitute 2.
For example, if 3, accounts for much more
total variance/covariance in X, than does 3.,
3,5 will largely drive the final factor solution
(i.e., it will largely determine A, W, and ©),
even though X, could be associated with a much
smaller sample size than 3y, The implication of
this fact is that as the proportion of total variance
associated with one level of analysis increases,
that level of analysis will increasingly determine
the final factor solution, irrespective of the number
of observations associated with it.

All of this is to say that single-level CFAs/
EFAs with multilevel data have the potential to

misrepresent the underlying nature of a re-
searcher’s data (Dyer et al., 2005). However,
such misrepresentations are not only undesir-
able, they are unnecessary. Using a logic similar
to that found in Equation 1, we may disaggre-
gate the variance in observed variables into their
respective B and W parts, and conduct CFAs or
EFAs at each level of analysis. To do this,
however, requires estimating the population
variance/covariance matrices 3 and X, which
are estimated with S*; and Sp, respectively.
Here, Spyy, is the pooled covariance matrix of the
within-group scores and S*g is the covariance
matrix of the between-groups scores, scaled for
group size (Muthén & Satorra, 1995). These are

2 E (yij - y/')()’t;f - yj'),

Spw = N—k (10)

which is a variance/covariance matrix of devia-
tions for each individual away from each j’s group
mean across all n individuals within each group
and across all k& groups (Muthén, 1994), and

k

E n(Yj - )’)(Yj -y

J

Sy = 1 (11)

which is the variance/covariance matrix of
means of y for each group j, weighted by n
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(Muthén, 1994). Above, y; and y; are as previ-
ously defined, y is the grand mean of y across all
i and j units, k is the total number of groups, n
is the number of individuals within each group,
and N is the total sample size—to compute the
B and W correlation matrices, one need only
divide the covariances by the product of the stan-
dard deviations of the variables at their respective
level of analysis. While Spy, is a consistent esti-
mator of 3, S*; contains elements of both 3,
and ¢, where c is a scaling factor representing
the common group size (see Muthén, 1991).
Therefore, CFAs and EFAs using Sp;, may be
interpreted simply, but those using S*; should be
considered as slightly more exploratory than tra-
ditional factor analyses (Muthén, 1991).

To highlight the possible differences found
when conducting single-level and multilevel
factor analyses with multilevel data, we con-
ducted both types of analyses using an em-
ployee job satisfaction scale with seven items,
which addressed satisfaction with training
availability, advancement opportunities, and the
like (see Tables 1 and 2 for descriptive statis-
tics). These items were self-referential in that
each item assessed the satisfaction of the indi-
vidual. Thus, the between-groups model of
these variables was the variance/covariance of
group-averaged job satisfaction and the within-
groups model of these variables was the vari-
ance/covariance of deviations away from
group-averaged job satisfaction—although the
satisfaction items are self-referential, the be-
tween-groups variance in satisfaction is relevant
given that various group- and organization-level
factors have been shown to be associated with
satisfaction (see Howard & Frink, 1996).

Using the total, aggregate correlation matrix, a
single-level EFA was conducted using a maxi-
mum likelihood estimator with promax rotation
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with the program Mplus (see Muthén & Muthén,
1998 -2006). As is shown in Model A from Table
3, a 3-factor solution fit the data the best. Looking
at the factor loadings shown as Model A from
Table 4, and using a cutoff loading of .40 and
above (in concert with smaller loadings on all
other factors) to assign variables to factors, it is
clear that items 1 and 5 load on factor 1, items 2
and 6 load on factor 2, and items 3, 4, and 7 load
on factor 3.

However, when we disaggregate the correla-
tion matrix as allowed in Equations 10 and 11,
this is no longer the case. Again using the
Mplus program, both Spy, and S*; were com-
puted (see Table 2) and an EFA was conducted
on each matrix for the 7-item satisfaction scale.
While the overall number of factors was stable
across the B and W parts (see Models B and C
from Table 3), the factor loadings and concom-
itant factor structures were discrepant across the
levels of analysis. As shown in Model B from
Table 4, the structure of the single-level EFA is
maintained at the within-groups level of analy-
sis (due to the much larger proportion of vari-
ance associated with the within-groups load-
ings, as indicated by the intraclass correlation
coefficients found in Table 1).

Problematically, for interpreting the single-
level EFA, the single-level factor structure does
not match the results found at the between-groups
level of analysis. As is shown in Model C from
Table 4, items 1, 5, and 7 load on the first factor,
only item 2 relates to the second factor, and the
third factor is now composed of items 3, 4, and 6.
In other words, the pattern of factor loadings are
noninvariant across levels of analyses. This type
of noninvariance has been called “configural non-
invariance” in literature on invariance testing (e.g.,
Vandenberg & Lance, 2000). This noninvariance
means that the latent variables cannot be assumed

Table 3
Results of Factor Analyses with Promax Rotation
1 factor 2 factors 3 factors

X2 RMSEA  SRMR  df X2 RMSEA  SRMR  df x> RMSEA  SRMR  df
Model A 838.463 .095 038 14 168.923 .200 .029 8 70366 .058 .010 3
Model B 506.944 .264 .037 14 300.505 075 .023 8 31.329 137 .009 3
Model C  801.070 .093 038 14 372482 .083 .026 8  69.293 .058 .010 3
Note. Model A = single-level exploratory factor analysis; Model B = between-groups exploratory factor analysis; Model

C = within-groups exploratory factor analysis; RMSEA = root mean square error of approximation; SRMR = standardized

root mean square residual; df = degrees of freedom.
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Table 4

Promax-Rotated Factor Loadings and Factor Correlations

Single-level

Between-groups

Within-groups

Item Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3
S1 .673 .032 .082 913 .005 .067 .676 .021 .084
S2 241 .680 .044 .082 998 .103 250 .669 .031
S3 —.020 223 615 324 164 538 —.029 238 594
S4 134 .004 472 .083 —.031 851 121 .003 475
S5 480 178 164 702 162 134 446 175 183
S6 —.006 529 .386 248 257 496 —.023 .560 362
S7 269 —.043 .563 .667 —.054 323 .229 —.032 .580
F1 — — —

F2 571 — .634 — 567 —

F3 .696 647 — 178 .684 — .689 .649 —
Note. S1-S7 = satisfaction items 1-7; FI-F3 = factors 1-3 for indicating factor correlations.

to have equal meanings across the levels of anal-
ysis; the items are reflecting different latent vari-
ables across the levels of analysis.

As can be seen, these results indicate the ben-
efits of taking a multilevel approach to measure-
ment-based issues with multilevel data. Again, as
is shown Table 4, an assumption of multilevel
measurement invariance may be imposed in sin-
gle-level EFAs of multilevel data. In this case, the
assumption of multilevel measurement invari-
ance—of the strict-invariance type forced by the
single-level factor analysis—is untenable, given
the difference in the pattern of factor loadings
across the levels of analysis. From a theoretical
standpoint, when finding such noninvariance
across levels of analysis, a researcher should at-
tempt to interpret the meaning of the latent vari-
ables across the levels of analysis based on the
substantive content of the items in question and on
the context within which they were collected (see
Cronbach, 1976; Sirotnik, 1980). Based on theo-
retical considerations, one now might conduct a
series of multilevel CFAs, for instance, to better
understand the meaning of the latent variable and
the causes of these discrepant loadings (see Dyer
et al., 2005).

Finally, the issue of discrepant factor struc-
tures aside, another notable result of the multi-
level EFA was the much larger factor loadings
found at the between-groups level of analysis,
indicating that the between-groups variance
may be considered much more reliable than the
within-groups variance. Regarding this differ-
ence, it is first important to note that examining
the magnitude of these differences across levels
of analysis with tests of statistical significance is

problematic and, as with many issues of inter-
pretation in the context of EFA results (e.g.,
number of factors to retain; for a review, see
Gorsuch, 1983), researchers should interpret
any differences in light of their theoretical
model and observed data. In particular, atten-
tion should be given to the pattern of similarities
and differences across levels, not on particular,
isolated discrepancies among parameter esti-
mates. The former approach provides for a more
theoretically sound explanation of results and
also prevents assigning too much weight to a
particular finding that potentially represents an
anomaly within the sample data.

Also, when attempting to meaningfully inter-
pret differences in factor loadings across levels
researchers should be aware that, because the
between-groups part of the model occurs as a
function of aggregates (i.e., group means),
much of the measurement error in the data is
removed in the between-groups model (see
Cronbach, 1976). This fact means that research-
ers may expect larger between-groups factor
loadings in general—albeit less stable factor
loadings in the between-groups model owing to
the smaller sample size between groups than
within groups. Therefore, researchers may find
most useful any differences in the pattern of
factor loadings across levels of analysis (i.e.,
configural invariance across levels) rather than
the magnitude of the difference between any
given factor loading across levels. To address
the difference in reliabilities across levels, we
now explore single-level reliability indices
computed with multilevel data.
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Reliability Analysis

A prerequisite for any psychological test hav-
ing meaning or practical utility is the test being
a reliable measure of the construct or attribute
of interest. Nunnally (1978, p. 206) defined
reliability as “the extent to which [measure-
ments] are repeatable and that any random in-
fluence which tends to make measurements dif-
ferent from occasion to occasion is a source of
measurement error.” Analytically, reliability
represents the proportion of covariance, or sys-
tematic variance, relative to the total variance of
a measure (Lord & Novick, 1968). Accordingly,
a set of measurements exhibits reliability to the
extent that it is composed of systematic variance
and is free from random-error variance.
Whereas tests exhibiting “adequate” reliability
may or may not measure the intended construct,
tests lacking reliability represent no more than
random variance and, therefore, necessarily do
not reflect the underlying attribute (or, for that
matter, any one attribute). Related to this point,
reliability is important to assess because it
places an upper-bound limit on relationships
between a scale score composed of a group of
items and any other variables (Cortina, 1993).

Problematically, when reliability is computed
for a scale which was administered to individ-
uals within groups, the reliability value will
reflect both between- and within-groups sources
of consistent variation (Muthén, 1991). In other
words, this value will collapse across between-
and within-groups variation and constrain to
invariant each source of internal consistency.
For example, consider a scale in which the
lower-level dependent variables contain both
between- and within-groups variance (e.g., 5%
between-groups and 95% within-groups vari-
ance). Perhaps the scale is completely unreli-
able at the between-groups level, but is per-
fectly reliable at the within-groups level (an
unlikely event [Bliese, 1998], but discussed
here for pedagogical purposes). In such a case,
a single-level reliability computation will surely
return an acceptable value because only 5% of
the variance is unreliable. However, the rela-
tionship between a group-level predictor and
this lower-level dependent variable necessarily
would be zero, due to the complete unreliability
at the between-groups level. Further, the rela-
tionship between this variable and any other
variable which contains between-groups vari-

ance also will be restricted to zero at the be-
tween-groups level—something a researcher
might erroneously conclude had to do with a
lack of a substantive relationship, rather than a
measurement-based problem, because of the ad-
equate single-level reliability value which was
observed.

Conversely, consider the case in which the
same dependent variable is perfectly reliable at
the between-groups level but not at the within-
groups level. By computing alpha, the re-
searcher may conclude that the measure is ex-
tremely unreliable (as 95% of the variance is not
internally consistent), failing to consider the
fact that the measure is perfectly reliable at the
between-groups level (a much more likely event
[Bliese, 1998]). In this case, again, simply com-
puting single-level reliability would yield mis-
leading or erroneous results in terms of the
measure’s properties, the meaning of the vari-
ables, and possible predictor-criterion relation-
ships. Further, by only examining single-level
reliability, a researcher would be unaware of the
fact that the between-groups portion of the scale
mean would be able to have nonzero relation-
ships with other variables, while the within-
groups portion of the scale mean would not.

As noted above, the erroneous assumption of
invariance in the above examples is problematic
not simply because the invariance constraint is
empirically unjustified. Instead, in both cases
the researcher has missed the opportunity to
discover important information regarding the
functioning of the observed variables. With
such information, the researcher would be able
to change not only their interpretation of the
observed variables from a theoretical perceptive
(see Chen et al., 2004) but, concurrently, change
the analytic tact taken in the research endeavor.

In order to contrast single-level and multilevel
reliability estimates found with the satisfaction
scale above, we first computed single-level alpha
for the satisfaction items. This yielded a value
of .88. However, recalling above that the between-
groups variance in the items had much higher
factor loadings on the latent variables, we can
expect the value of .88 to be collapsing across the
between-groups reliability, which should be
higher than .88, and the within-groups reliability,
which should be lower than .88. To investigate
this proposition, we disaggregated the between-
and within-groups variance in the items in line
with Equation 1. In other words, we computed
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each group’s mean for the satisfaction items and
each individual’s deviation away from the group
mean. Then we computed alpha for the between-
groups data, which was .93. This stands in contrast
to the within-groups alpha value, which was .87.

As is clear with our data, the reliabilities are
different—although they are both adequate—and
the within-groups variance has largely determined
the reliability estimate. This has implications for
MRCMs which would use a mean of these satis-
faction items. Aside from the issues mentioned
above, one important aspect of the discrepant re-
liabilities has to do with corrections researchers
may desire to make to relationships associated
with scale aggregates. As is well known, one may
correct relationships for any attenuation due to
unreliability using Spearman’s classic formula
(see Nunnally, 1978). However, if one were to use
the single-level reliability estimate, any such cor-
rections would not take into account the fact that
the correction at the between-groups level should
be smaller than the correction at the within-groups
level. We now explore assumptions of structural
invariance which are often committed with mul-
tilevel data.

Multilevel Random Coefficient Modeling

As noted above, MRCM allows researchers
to answer questions at the level at which they
are asked (Nezlek & Zyzniewski, 1998). This is
because the MRCM framework can disaggregate
a variable’s variance into the appropriate between-
and within-groups components. This may can be
illustrated in the structure of the common MRCM
(see Raudenbush & Bryk, 2002), which may be
heuristically represented as

Vi = Bo T Byxy + o1y (12)
BOj = Yoo t Uy (13)
Blj = Yo (14)

where y;; is as above, B, is the intercept for a
group j (i.e., the group mean in a model without
predictors), B,; represents the effect of a predic-
tor x on the criterion y for a group j, x; is the
score along a predictor x for person i in group j
(a predictor which contains both between- and
within-groups variance), r;; is the residual in the
model for person i in group j, Yo is the grand-

intercept (i.e., the grand mean in a model with-
out predictors), u, is the intercept-residual for
group j (i.e., the group’s distance from <y,
which allows the group’s intercept to randomly
vary around vq,), Yo 1s the grand slope-
intercept (i.e., the average relationship between
x and y for the model) — models with a randomly
varying By; (i.., u,;) are not discussed here for
the sake of concision.

As may be surmised, the variance across in-
dividuals in r; is within-groups variance, while
the variance across groups in u, is between-
groups variance. In other words, this model has
disaggregated “residual” variance (i.e., variance
unaccounted for by any substantive predictors)
in y; at the appropriate level of analysis. How-
ever, less easily surmised is the fact that the
between- and within-groups variance in this
model may not only be viewed as “residual”
variance but may also be conceptualized as be-
ing associated with the effect of the predictor on
the criterion (it may be helpful to recall that, in
this example, all of the variance in y; is either
between- or within-groups variance, not just
between- or within-groups residual variance).
This is because the terms B,; and vy, the latter
of which is often reported in multilevel analyses
(e.g., Hofmann et al., 2003), collapse across
both the between- and within-groups influences
of x on y, effectively constraining these struc-
tural parameters to invariance across multiple
levels of analysis.

The constraint of structural invariance in
MRCMs may be illustrated by using the mean
of the satisfaction items mentioned above (i.e.,
the scale mean for each person), and regressing
that mean onto a variable which assesses em-
ployees’ perceptions of the level of bureaucracy
up with which they have to put (again, see
Tables 1 and 2 for descriptive statistics). Draw-
ing from the job characteristics model (see
Hackman & Oldham, 1976), it is reasonable to
expect a relationship among these variables to
the extent that less bureaucracy in one’s job
should allow increased individual performance,
leading to greater levels of “experienced mean-
ingfulness”, and therefore greater levels of job
satisfaction. Using the satisfaction-scale mean
as the criterion and the bureaucracy variable as
a predictor, we may estimate the model shown
in Equations 12-14 (it is noted that first an
“unconditional model”, using only the satisfac-
tion variable, was estimated for continuity [see
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Table 5
Multilevel Random Coefficient Model of Multilevel Effects
Effect G StdG SE T df p
Model A
INTERCEPT, vy, 2.564 — .012 187.119 504 <.05
Model B
INTERCEPT, v, 2.541 — .012 189.230 504 <.05
INTERCEPT, v, —.102 —.133 .004 —8.697 504 <.05
Model C
INTERCEPT, vy, 4.236 — .587 7.095 504 <.05
SLOPE, v, —.667 —.390 241 —2.768 504 <.05
INTERCEPT, v, —.098 —.128 .012 —8.298 504 <.05
Parameter variance SE t df p
Model A
Between-groups variance, u, .046 .006 7.461 504 <.05
Within-groups variance effect, r; 548 .012 46.948 504 <.05
Model B
Between-groups variance, i, .044 .006 7.298 504 <.05
Within-groups variance effect, r; 541 .012 44.574 504 <.05
Model C
Between-groups variance, u, .039 .007 5.845 504 <.05
Within-groups variance effect, r; .540 012 44.694 504 <.05

Note.
of freedom.

Table 5, Model A]). Again, this was accom-
plished using the program Mplus.

Modeled parameters are provided in Table 5,
Model B; for estimates of “variance accounted
for” at each level of analysis, comparisons may
be made between initial between- and within-
groups variance terms (i.e., Model A), and these
terms following the inclusion of the predictor
(Raudenbush & Bryk, 2002). The variance ac-
counted for between groups was 4.35%, and the
variance accounted for within groups
was 1.28%. As is shown in Model B, Table 5,
the term vy, provides a single effect estimate for
the between- and within-groups effect of x on y
(Y10 = —-102, SE = .012, Standardized Param-
eter = —.133). This is an assumption of multi-
level invariance because the possibility of dis-
crepant effects across the levels of analysis has
been left untested and, instead, is assumed.
More specifically, this is an assumption of mul-
tilevel structural invariance, as the structural
relationships between the predictor and crite-
rion are forced to strict invariance across the
between- and within-groups levels of analysis.

Interestingly, the fact that -y, is a function of
both between- and within-groups effects has
been intimated in previous work on applying

G = v, StdG = -y parameters standardized to the variance(s) of the variable(s); SE = standard error; df = degrees

MRCM to data with a nested structure (e.g.,
Nezlek & Zyzniewski, 1998). Further, a simple
technique exists for assuring that assumptions
of multilevel structural invariance are not vio-
lated (Kreft, de Leeuw, & Aiken, 1995). By
“group-mean centering” the predictor (i.e., by
removing the between-groups variance in x) and
entering the extracted means at the group-level
of analysis, researchers may disaggregate the
effect of the predictor on the criterion because
there will be different effect estimates of x on y
at each level of analysis. This may be shown as

Vi = Bo t Bilxy —xp) + 1y (15)
BOj = Yoo T Yorx; T Uy (16)
By = Yo (17)

where all terms are as above (and as shown in
Equation 1), such that (x; — x;) represents the
within-groups portion of the predictor (i.e., de-
viations away from the group mean for each
individual) and x; represents the between-
groups portion of the predictor (i.e., the group
means). Results from this model are presented
in Table 5, Model C.
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As is clear, this model allows for the appropri-
ate disaggregation of not only residual variance,
but also the multilevel effect of x on y, with the
within-groups effect y,, ( = —.098, SE = .012,
Standardized Parameter = —.128) and the be-
tween-groups effect v, ( = —.667, SE = 241,
Standardized Parameter = —.39). By comparing
these disaggregated results to that derived above,
it is clear that the within-groups effect was largely
driving the total effect (because of the signifi-
cantly larger amount of variance at the within-
groups level), which served to grossly misrepre-
sent the between-groups effect. Such misrepresen-
tation has been solved with the logic shown in
Equations 15-17. In other words, this model al-
lows researchers to not assume multilevel struc-
tural invariance in their parameter estimates.

Further, this disaggregated model, because it
allows the between-groups effect to be freely
estimated, rather than be restricted to equality
with the within-groups effect, allows more of
both the between- and within-groups variance
to be accounted for than the previous model.
The variance now accounted for between
groups was 16.67% (vs. 4.35%) and the vari-
ance accounted for within groups was 1.46%
(vs. 1.28%). This is because the effect estimate
at each level of analysis is optimized to repre-
sent the level-specific effect of x on y, and when
these effects differ across levels of analysis, a
single parameter representing both will not op-
timally solve for the equation at either level. As
indicated by the difference in the between- and
within-groups effects, and the proportions of
variance accounted for, without disaggregating
the multilevel effects in their models, researchers
run the rather serious risk of inappropriately con-
straining structural parameters to invariance
across levels of analysis; such a constraint affected
not only on the effect of x on y, but also the
associated “variance accounted for” statistics.

Before concluding, it is relevant to discuss
the fact that Raudenbush and Bryk (2002) note
that difference in effects across levels of anal-
ysis may be tested by grand-mean centering
individual-level predictors (which contain both
between- and within-groups variance) and en-
tering them at “Level 1,” as shown in Equa-
tions 12. Then, by entering group means of the
same variable at “Level 2,” as shown in Equa-
tion 16, researchers may test the difference be-
tween the within- and between-groups effects.
With such a model, the effect at Level 1 be-

comes the within-groups effect and the effect of
the group mean becomes the between-groups
effect minus the within-groups effect (i.e., the
composition effect [see Raudenbush & Bryk,
2002]). Thus, the statistical significance of the
effect of the group means is the statistical sig-
nificance of the difference across the between-
and within-groups levels of analysis in the ef-
fect of the predictor on the criterion (i.e., the
composition effect). Without such statistical
significance, researchers may assume that the
effects of interest are invariant across levels
(Kenny, Bolger, & Kashy, 2001).

Discussion

In this article, we have attempted to highlight
the assumptions of measurement and structural
invariance that researchers often implicitly
make when analyzing data that contain mean-
ingful multilevel variance. We hasten to men-
tion that the stated problems of assuming invari-
ance could be far worse than the current exem-
plars illustrate. For example, consider a
situation where a factor structure is not invariant
across levels of analysis: a series of observed
variables that are multidimensional at the with-
in-groups level and unidimensional at the be-
tween-groups level of analysis, both with ade-
quate factor loadings. Depending on the propor-
tion of variance residing at each level and the
factor analytic technique used, a factor analysis
could extract either two or one factor from the
observed variables. In the former case, if each
factor is used to create two separate variables
for use in an MRCM, the unidimensional be-
tween-groups variance will be unjustifiably par-
titioned into two scale scores. In the latter case,
if a single variable is used to represent the
items, the within-groups factors will be treated
as a single variable, providing for equally prob-
lematic within-groups scale aggregates. When
investigating cross-level differences in factor
structures, researchers should attend to any dif-
ferences, both from a theoretical and empirical
perspective, and choose their subsequent anal-
yses based on such concerns.

Moving on to assumptions of multilevel
structural invariance, it should be recognized
that this issue is one of both theoretical and
statistical importance. Statistically, for example,
as one increases (1) the number of predictors
and (2) the levels of analysis which are modeled
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in one’s data, the possibility of inappropriate
multilevel invariance becomes greater when
employing techniques insensitive to the multi-
level nature of effects. For example, assuming a
.5 probability that effects of predictors on a
criterion vary across levels of analysis for each
predictor in a MRCM, a 2-level model with a
single predictor will have a .5 probability of
forcing inappropriate invariance on effects be-
cause there is one predictor with one difference
in the level of analysis: level 1 versus level 2.
However, a 3-level model with one predictor
will have a .875 probability of committing this
error because there are now three differences in
level of analysis: level 1 versus level 2, level 1
versus level 3, and level 2 versus level 3. Now,
consider the same progression, but with two
predictors. The probability of an erroneous mul-
tilevel invariance assumption is .75 with a
2-level model, but for a 3-level model the prob-
ability jumps to .984375! based on the notion
that complex, polylevel models are likely to
become more common than they are today in
multilevel research, the practice of automati-
cally constraining relations to invariance across
levels will only become more insidious with
such increasingly complex models.

Due to these concerns, theoretical postula-
tions finding support through empirical results
which were, in turn, informed by inappropriate
analyses of multilevel data, should be consid-
ered suspect. Also of suspicious origins are
findings stemming from analyses which have
left unexamined the possibility of noninvariant
cross-level measurement and structural parame-
ters estimates. Regarding the former, any research
which explores the factor structure of multilevel
data using single-level analyses may be providing
results which have little meaning (depending on
the true underlying factor structure at multiple
levels of analysis). Regarding the latter, MRCM
analyses which have collapsed across between-
and within-groups effects, and constrained to
equality these effects, should be warily used as
support for hypotheses which specify relation-
ships between “individual level” variables (when
such variables contain both between- and within-
groups effects). In concert, these points mean that,
while multilevel research has the potential to offer
new avenues of insight for theory and research of
people in groups, unless it is done correctly, it has
the potential to provide results that are obtuse at
best, and erroneous at worst (Raudenbush & Bryk,

2002). Only research which correctly accounts for
the multilevel influences on its data may offer
insight into the complex phenomena which shape
people and groups.

Notably, although we have discussed these is-
sues as assumptions, one must address before pro-
ceeding with subsequent analyses, findings of in-
variance across levels of analysis also are of sub-
stantive value in theory and measurement
development. For instance, results demonstrating
that a measure of job satisfaction exhibits a dif-
ferent factor structure at the person and organiza-
tional level suggest the nonequivalent meaning of
the job satisfaction construct at the different levels
(Cronbach, 1976; Sirotnik, 1980). Such findings
should engender investigations into the nature,
origin, consequences, and generalilzability of
these different meanings. Is it the case, for exam-
ple, that individuals in different organizations con-
strue satisfaction in discrepant ways due to their
respective organizational cultures or reward sys-
tems? Such questions can be answered by testing
for cross-level measurement invariance and, as-
suming such invariance exists, can be modeled as
a function of other explanatory variables (Chen et
al., 2005).

In closing, we have outlined methods for ex-
amining cross-level differences in measurement
and structural parameters. Such differences carry
with them information relevant to both theoretical
and empirical pursuits (Morgeson & Hofmann,
1999). However, it is of note that researchers often
desire to ignore the multilevel nature of their data
altogether in order to test, for example, “individ-
ual-level” or group-level models (for a discussion,
see Klein, Dansereau, & Hall, 1994). In individ-
ual-level modeling, researchers ignore the group-
ing structure of their data and estimate single-level
analyses using both the between- and within-
groups variance in their model. In group-level
models, researchers utilize only the between-
groups variance in their measures of interest.
In these cases, researchers may be disinclined to
investigate their data for cross-level parameter in-
variance but should be aware of the possibility of
cross-level differences in parameter estimates
for their theoretical models of interest. If the re-
searcher deems such differences as being not of
theoretical interest or if the observed cross-level
differences are minimal, they may be motivated to
proceed with their originally planned investiga-
tion. However, with very large differences in pa-
rameters across levels, the ability of single-level
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theories and results to tell the whole story of the
data may be lacking. Therefore, armed with the
discussion and methods we provide for under-
stand cross-level differences in modeled parame-
ters, we recommend scholars investigate their data
for such differences in order to better inform the
theory and empirically testable assumptions upon
which their research relies.
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